skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sadrzadeh, Mohtada"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ti3C2TxMXene membranes have attracted considerable interest due to their exceptional water transport properties, yet the role of cation intercalation on governing transport remains poorly understood. In this experimental and theoretical study, it shows how intercalation with K+, Na+, Li+, Ca2+, and Mg2+modulates both the nanochannel architecture and water flux of Ti3C2Txmembranes. Unlike in graphene oxide analogs, cations with larger hydration diameters in Ti3C2Txexpand the interlayer spacing, widening flow channels, enhancing slip length of these nanochannels, and boosting water flux from 31.45 to 61.86 L m−2 h−1. To overcome intrinsically poor adhesion of Ti3C2Txto polymeric supports, this study incorporates a thin polyvinyl‐alcohol interlayer, which substantially enhances mechanical robustness and structural integrity. Together, these findings elucidate how cation hydration controls water transport and offer a flexible strategy for tailoring MXene membrane performance. 
    more » « less
    Free, publicly-accessible full text available August 13, 2026
  2. As the demand for sustainable and efficient water treatment solutions grows, the integration of advanced nanomaterials has become a focal point in enhancing membrane technologies. The purpose of this review is to provide a comprehensive and critical analysis of the current state of research on Ti3C2Tx MXenes, highlighting their unique properties, the challenges they address, and the potential they hold for MXene-enhanced biofiltration-membrane systems. The perspective systematically examines how Ti3C2Tx MXenes, with their exceptional electrical conductivity, hydrophilicity, and tunable surface chemistry, can be integrated into biofiltration-membrane systems to improve key performance metrics such as water flux, contaminant rejection, and fouling resistance. Various processes, including biofiltration, adsorption, and nanofiltration, are discussed, where Ti3C2Tx MXenes have been shown to have a potential application. In addition to synthesizing existing literature, experimental validations are presented that demonstrate how MXene incorporation can alter membrane morphology and structure, leading to improved antibacterial properties and enhanced overall performance. These findings underscore the transformative potential of Ti3C2Tx MXenes in developing next-generation biofiltration-membrane technologies that are not only more efficient but also more sustainable. Through this perspective, the key challenges that remain, such as cost implications and long-term stability, are identified, and future research directions are proposed to address these issues. This in-depth analysis highlights the critical role MXenes can play in advancing water treatment technologies, particularly in the context of water reuse, and encourages further interdisciplinary research in this rapidly evolving field. 
    more » « less